数学历史故事

2021-12-17

  数学历史故事(一):

  祖冲之(公元429-500),字文远,是我国古代南北朝时代南朝杰出的科学家,原籍是范阳郡遒县(今河北莱源县),因战乱,他的祖先迁居江南。公元429年,祖冲之诞生在南方宋朝一个士大夫的家庭。这家有几代研究历法,祖父掌管土木建筑,也懂得一些科学技术,所以祖冲之从小就有机会接触家传的科学知识,他少年时代就开始钻研古代的经典。思想机敏。勇于创新,勤奋地学习,对各种事物敢于大胆设想,勇于创新,并且勤于实践。他搜集和阅读了很多有关天文、数学等方面的书籍与文献资料,并经常进行精密的测量和仔细的推算。就象自我说的那样;“亲量圭尺,躬察仪漏,目尽毫厘,心军筹策”。由于他既崇尚抽象的理论,又注重理论的应用,突破了天命论、神秘主义的桎梏,敢于实践,勇于改革,所以在当时劳动人民创造的高度发达的物质财富的基础上,取得了不少有价值的科学成果,异常是天文历法和数学方面的成就更为突出。

  我国古代以往长期采用“十九年七闰月”的方法作为历法来计算阴历。祖冲之经过仔细推算和研究,发现这种历法虽然能够使两种(阴历和阳历)天数大致相符,但还不够精确,过了二百年就会相差一天。所以,他决心打破传统观念改革闰法。总结了前人经验,经反复实验,科学计算,改为第三百九十一年中有一百四十四个闰年。这样就相当精确了。他在一文历法中的另一重大成就是在历法计算中第一次应用了岁差,即指地球围绕太阳运行五周,不可能完全回到上一年的冬至点的现象。他算出了岁差为四十五年十一个月后退一度(一度等于60分),并在他的《大明历》中加以应用。虽然尚不够准确,但这在天文学史上却是一个空前的创举。为了使历法更精确,他还算出交点月,即月亮连续两次经过黄白交点所需的时间是27。21223日,这与现代测得的21。21222日极相近似。这为准确地算日食月食妇生的时间创造了条件。

  在上述基础上,他制成了当时最科学的历法——《大明历》。那时他才三十三岁,公元462年,他把《大明历》交给朝廷,请求予以颁行。但遭到以贵族官僚戴法兴为首的坚决反对。戴法兴是一个很有权势的人物,又稍稍懂一点历史,但思想十分保守,戴硬说太阳转动一周(实际上是地球绕太阳一周)的时间有快有慢,没有规律。祖冲之反驳说:“太阳的转动是有一眯规律的,这是有事实根据的”。戴又说:“日月星辰的快慢变化,凡人是测算不出的”。祖冲之说“这些变化并不神秘,只要人们进行精密的观测和细致的推算,是完全能够算出来的。事实上人们已掌握了必须的规律”。把戴批驳得哑口无言,祖冲之最终击败了保守势力,取取得最终胜利,然而直到他死后十年在他儿子祖恒再三推荐下,新历法才在公元510年被正式采用。

  祖冲之在数学研究方面,异常是在圆周率的研究上,做出了在数学史具有深远影响的巨磊贡献。古代最早求得的圆周率是“3”,西汉末年刘又得到3.1547的圆周率值。东汉的张衡算出3.1622的值,到了三国末年,数学家刘徽创造了用割圆术求得圆周率方法,得出3.141024的值。祖冲之地吸收了其中一些有的东西,又不为前人结论束缚,经过自我的精密测算,算出圆周率值在3.1415926和3.1415927之间,并以227和355113作为用分数表示圆周率的疏率和密率。这是世界上第一个最精确的圆周率,欧洲人奥托和安托尼兹直到公元1573年,才先后求出这个数值。实际上早在他们一千一百多年前,祖冲之就得到这个数值了,因而,日本数学家三上义夫主张称名为“祖率”。

  祖冲之在推算圆周率时,对九位数的大数目,需要反复进行包括加减乘除与开方等方法的运算五百三十次以上。并且当时他还是用筹码(小竹棍)来计算的。从那里能够看出他严谨的治学态度和坚韧不拔的毅力。

  之后,祖冲之把数学上的研究成果写成一本书,叫做“缀术”,资料很丰富,可惜早已失传了。

  除了在天文、历法和数学方面做出重大贡献外,在他五十岁那年,以往仿制成功一辆指南车,这车子不管怎样转动,车上木人的手总是指着南方。他又看到群众用人力磨数值十分吃力,于是开动脑筋,反复实验,制成了水碓磨。同时还制造成功一种“千里船”,经过试验,日行百余里。此外,他还懂得音乐,注过多种经典。因而祖冲之能够说是我国古代杰出而又博学多才的一位科学家。

  祖恒是祖冲之的儿子,字景烁,生卒年月已无可考。他也是一个博学多才的数学家,曾在公元504年、509年和510年三次上书提议采用祖冲之的《大明历》,最终实现了父亲的遗愿。

  祖恒的主要工作是修补修改祖冲之的《缀术》。

  祖恒推导球体积公式的方法十分巧妙,其理论依据是这样一条被他当作“公理”使用的命题:“幂势既同,则积不容异”,其中“幂”是截面积,“势”是立体的高。把这命题翻译成现代汉文并写得详细一点就是:“界于二平行平面之间的确良两个立体,被任一平行这二平面的平面所截,如果两个截面的面积相等,则这两个立体的体积相等”。这命题在国外通常称为“卡瓦列利原理”或“卡瓦列利定理”。卡瓦列利(1598-1647)是意大利米兰人,伽利略的学生,波伦拿大学教授,为十七世纪意大利数学家中影响最大的一个。这定理是他于1635年在波伦拿出版的名著《连续不可分几何》一书中提出的,但却比祖恒迟了1100多年。

  数学历史故事(二):

  牛顿

  “我必须要超过他!”

  一谈到牛顿,人们可能认为他小时候必须是个“神童”、“天才”、有着非凡的智力。其实不然,牛顿童年身体瘦弱,头脑并不聪明。在家乡读书的时候,很不用功,在班里的学习成绩属于次等。但他的兴趣却是广泛的,游戏的本领也比一般儿童高。

  平时他爱好制作机械模型一类的玩艺儿,如风车、水车、日晷等等。他精心制作的一只水钟,计时较准确,得到了人们的赞许。

  有时,他玩的方法也很奇特。一天,他作了一盏灯笼挂在风筝尾巴上。当夜幕降临时,点燃的灯笼借风筝上升的力升入空中。发光的灯笼在空中流动,人们大惊,以为是出现了彗星。尽管如此,因为他学习成绩不好,还是经常受到歧视。

  当时,封建社会的英国等级制度很严重,中小学里学习好的学生,能够歧视学习差的同学。有一次课间游戏,大家正玩得兴高采烈的时候,一个学习好的学生借故踢了牛顿一脚,并骂他笨蛋。牛顿的心灵受到这种刺激,愤怒极了。他想,我俩都是学生,我为什么受他的欺侮我必须要超过他!从此,牛顿下定决心,发奋读书。他早起晚睡,抓紧分秒、勤学勤思。

  经过刻苦钻研,牛顿的学习成绩不断提高,不久就超过了曾欺侮过他的那个同学,名列班级前茅。

  数学历史故事(三):

  公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟-子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯所以被囚禁,受到百般折磨,最终竞遭到沉舟身亡的惩处。

  不可通约的本质是什么长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一向被认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。

  然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来.

  同时它导致了第一次数学危机。

  数学历史故事(四):

  欧拉瑞士数学家,英国皇家学会会员。

  欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。可是,这并没有影响他的工作。欧拉具有惊人的记忆力。氢说,1771年圣彼德堡的一场大火,把他的很多藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论著多部。欧拉这们18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。

  欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。

  数学历史故事(五):

  高斯是德国数学家、物理学家和天文学家,英国皇家学会会员。

  高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的《《算术研究》》,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国著名高等学府天文台台长,并一向在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)著作,提出了404项科学创见,完成了4项重要发明。

  高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。

  数学历史故事(六):

  华罗庚

  华罗庚初中毕业后,因家境贫寒,无力进入高中学习,只好到黄炎培在上海创办的中华职业学校学习会计,为的是能谋个会计之类的职业养家糊口。不到一年,由于生活费用昂贵,被迫中途辍学,回到金坛帮忙父亲料理杂货铺。在单调的站柜台生活中,他开始自学数学。他回家乡一面帮忙父亲在“乾生泰”这个仅有一间小门面的杂货店里干活、记账,一面继续钻研数学。回忆当时他刻苦自学的情景,他的姐姐华莲青说:“尽管是冬天,罗庚依然在账台上看他的数学书。鼻涕流下时,他用左手在鼻子上一抹,往旁边一甩,没有甩掉,就这样伸着,右手还在不停地写……”

  那时罗庚站在柜台前,顾客来了就帮忙父亲做生意,打算盘、记账,顾客一走就又埋头看书演算起数学题来。有时入了迷,竟忘了接待顾客,甚至把算题结果当作顾客应付的货款,使顾客吓一跳。因为经常发生类似的莫名其妙的事情,时间久了,街坊邻居都传为笑谈,大家给他起了个绰号,叫“罗呆子”。每逢遇到怠慢顾客的事情发生,父亲又气又急,说他念“天书”念呆了,要强行把书烧掉。争执发生时,华罗庚总是死死得抱着书不放。

  数学历史故事(七):

  陈景润

  数学家陈景润在大学读书时,生活极为简朴,他始终穿着一件黑色的学生装.由于家境贫寒,他经常一天吃两顿饭,为的是把省下的钱用来买书.他说:“饭能够不吃,书不能够不念.”他平时不看电影,不随便和人闲聊,全身心地投入学习当中.

  那时,宿舍有按时熄灯的制度,他为了不影响别人休息,便把头埋在被窝里,打着手电筒看书.

  在进军“哥德巴赫猜想”时,他居住在6平方米的小屋里,演算全靠自我笔算.他演算的手稿有几麻袋.就这样,日复一日,年复一年,整整十年过去了,陈景润在1966年最终攻克了“(1+2)”这个堡垒.英国数学家哈勃斯丹和西德数学家李希特把陈景润的发现誉为“陈氏定理”,说它是“筛法”的“光辉顶点”.一位英国数学家写信称赞他:“您,移动了群山!”

  数学历史故事(八):

  毕达哥拉斯(约公元前580年~约前500(490)年)

  毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛)的贵族家庭,自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。因为向往东方的智慧,经过万水千山,游历了当时世界上两个文化水准极高的礼貌古国——巴比伦和印度,以及埃及(有争议),吸收了美索不达米亚礼貌和印度礼貌(公元前480年)的文化。

  他最早悟出万事万物背后都有数的法则在起作用;认为无论是解说外在物质世界,还是描述内在精神世界,都不能没有数学。他在数论和几何方面都有杰出贡献,尤其以最早发现“勾股定理”(西方称“毕达哥拉斯定理”)著称于世。

  数学历史故事(九):

  数学家欧拉的生平

  欧拉1707年4月15日生于瑞士巴塞尔,1783年9月18日卒于俄国圣彼得堡。他生于牧师家庭。15岁在巴塞尔大学获学士学位,翌年得硕士学位。1727年,欧拉应圣彼得堡科学院的邀请到俄国。1731年接替丹尼尔·伯努利成为物理教授。他以旺盛的精力投入研究,在俄国的14年中,他在分析学、数论和力学方面作了很多出色的工作。1741年受普鲁士腓特烈大帝的邀请到柏林科学院工作,达25年之久。在柏林期间他的研究资料更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学,这些工作和他的数学研究相互推动。欧拉这个时期在微分方程、曲面微分几何以及其他数学领域的研究都是开创性的。1766年他又回到了圣彼得堡。

  欧拉是18世纪数学界最杰出的人物之一,他不但在数学上作出伟大贡献,并且把数学用到了几乎整个物理领域。他又是一个多产作者。他写了很多的力学、分析学、几何学、变分法的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》都成为数学中的经典著作。除了教科书外,他的全集有74卷。

  数学历史故事(十):

  战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。

  可是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。

  数学历史故事(十一):

  埃尔德什(1913年3月26日-1996年9月20日)

  匈牙利数学家。他一生发表了1475篇高水平的论文(包括与他人合写的),为现时发表论文数最多的数学家。他经常沉思数学问题,对其他的事物毫无兴趣;数字是他的至爱,所以他有“数字情种”之称。

  埃尔德什命运多舛,身为犹太人,遭纳粹迫害而亡命国外,50年代因与华罗庚通信而被怀疑通共亲华,被美国麦卡锡主义者赶出美国,从此终生漂泊浪迹。埃尔德什终身未娶,没有固定职业。他一天工作十八九个小时,一年四季奔波于世界各地,与数学界同行探讨数学难题,即便垂暮之年依旧热衷于猜想和证明,把一生献给了数学。

  数学历史故事(十二):

  大约1500年前,欧洲的数学家们是不明白用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照必须规则,把它们组合起来表示不一样的数目。在这种数字的运用里,不需要“0”这个数字。而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。

  他发现,有了“0”,进行数学运算方便极了,他十分高兴,还把印度人使用“0”的方法向大家做了介。过了一段时间,这件事被当时的罗马教皇明白了。当时是欧洲的中世纪,教会的势力十分大,罗马教皇的权利更是远远超过皇。教皇十分恼怒,他斥责说,神圣的数是上帝创造的,

  在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。

  可是。虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡。之后“0”最终在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

  数学历史故事(十三):

  康威(1937年12月26日-)

  英国数学家。他在群论﹑纽结理论﹑组合博弈论和编码学方面有杰出的贡献。他发明的“生命游戏”以往轰动一时,不单是一些普通人在玩,连一些有名的数学家和计算机专家也乐此不疲;所以他有“数学玩家”之称。

  康威年少时就对数学很有强烈的兴趣:四岁时,其母发现他背诵二的次方;十一岁时,升读中学的面试,被问及他成长后想干什么,他回答想在剑桥当数学家。之后康威果然于剑桥大学修读数学,现时为普林斯顿大学的教授。

  数学历史故事(十四):

  勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的本事,就问他是否能测量金字塔高度。泰勒斯说能够,但有一个条件——法老必须在场。第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓。秦勒斯来到金字塔前,阳光把他的影子投在地面上。

  每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离。这样,他就报出了金字塔确切的高度。

  在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理。也就是今日所说的相似三角形定理。

  数学历史故事(十五):

  拉格朗日(1736—1813),法国著名的数学家、力学家、天文学家,变分法的开拓者和分析力学的奠基人。他曾获得过18世纪“欧洲最大之期望、欧洲最伟大的数学家”的赞誉。

  拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。

  直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。

  在进入都灵皇家炮兵学院学习后,拉格朗日开始有计划地自学数学。由于勤奋刻苦,他的提高很快,尚未毕业就担任了该校的数学教学工作。20岁时就被正式聘任为该校的数学副教授。从这一年起,拉格朗日开始研究“极大和极小”的问题。他采用的是纯分析的方法。1758年8月,他把自我的研究方法写信告诉了欧拉,欧拉对此给予了极高的评价。从此,两位大师开始频繁通信,就在这一来一往中,诞生了数学的一个新的分支——变分法。

  1759年,在欧拉的推荐下,拉格朗日被提名为柏林科学院的通讯院士。之后,他又当选为该院的外国院士。

  1762年,法国科学院悬赏征解有关月球何以自转,以及自转时总是以同一应对着地球的难题。拉格朗日写出一篇出色的论文,成功地解决了这一问题,并获得了科学院的大奖。拉格朗日的名字所以传遍了整个欧洲,引起世人的瞩目。两年之后,法国科学院又提出了木星的4个卫星和太阳之间的摄动问题的所谓“六体问题”。应对这一难题,拉格朗日毫不畏惧,经过数个不眠之夜,他最终用近似解法找到了答案,从而再度获奖。这次获奖,使他赢得了世界性的声誉。

  1766年,拉格朗日接替欧拉担任柏林科学院物理数学所所长。在担任所长的20年中,拉格朗日发表了许多论文,并多次获得法国科学院的大奖:1722年,其论文《论三体问题》获奖;1773年,其论文《论月球的长期方程》再次获奖;1779年,拉格朗日又因论文《由行星活动的试验来研究彗星的摄动理论》而获得双倍奖金。

  在柏林科学院工作期间,拉格朗日对代数、数论、微分方程、变分法和力学等方面进行了广泛而深入的研究。他最有价值的贡献之一是在方程论方面。他的“用代数运算解一般n次方程(n》4)是不能的”结论,能够说是伽罗华建立群论的基础。

  最值得一提的是,拉格朗日完成了自牛顿以后最伟大的经典著作——《论不定分析》。此书是他历经37个春秋用心血写成的,出版时,他已50多岁。在这部著作中,拉格朗日把宇宙谱写成由数字和方程组成的有节奏的旋律,把动力学发展到登峰造极的地步,并把固体力学和流体力学这两个分支统一齐来。他利用变分原理,建立起了优美而和谐的力学体系,能够说,这是整个现代力学的基础。伟大的科学家哈密顿把这本巨著誉为“科学诗篇”。

  1813年4月10日,拉格朗日因病逝世,走完了他光辉灿烂的科学旅程。他那严谨的科学态度,精益求精的工作作风影响着每一位科学家。而他的学术成果也为高斯、阿贝尔等世界著名数学家的成长供给了丰富的营养。能够说,在此后100多年的时间里,数学中的很多重大发现几乎都与他的研究有关。

显示全文